On Routing Policies for Synchronized Queues

Mauro Escobar

Advisor: Mariana Olvera-Cravioto

Industrial Engineering and Operations Research Columbia University

November 2nd, 2015

1 Motivation

2 Model

- 3 Preliminary Results
- 4 Numerical Results

5 Conclusions

æ

• Cloud computing

ъ

- Cloud computing
- Large network of parallel servers

- Cloud computing
- Large network of parallel servers
- Cost of information, single centralized queue is not scalable

1 Motivation

2 Model

- 3 Preliminary Results
- 4 Numerical Results

5 Conclusions

Э

æ

• Identical servers, operate in parallel

- Identical servers, operate in parallel
- $\bullet\,$ Service time: general distribution S

- Identical servers, operate in parallel
- $\bullet\,$ Service time: general distribution S
- Arrivals: Poisson process with rate λn

- Identical servers, operate in parallel
- \bullet Service time: general distribution S
- Arrivals: Poisson process with rate λn
- Each job is split into a random number of pieces k, according to some distribution $f_n(k), k \in \{1, 2, ..., m_n\}, m_n \leq n$

- Identical servers, operate in parallel
- \bullet Service time: general distribution S
- \bullet Arrivals: Poisson process with rate λn
- Each job is split into a random number of pieces k, according to some distribution $f_n(k), k \in \{1, 2, ..., m_n\}, m_n \leq n$
- Each piece is routed to k different servers

- Identical servers, operate in parallel
- \bullet Service time: general distribution S
- \bullet Arrivals: Poisson process with rate λn
- Each job is split into a random number of pieces k, according to some distribution $f_n(k), k \in \{1, 2, ..., m_n\}, m_n \leq n$
- Each piece is routed to k different servers
- Routing must occur at arrival, no centralize queue

- Identical servers, operate in parallel
- \bullet Service time: general distribution S
- \bullet Arrivals: Poisson process with rate λn
- Each job is split into a random number of pieces k, according to some distribution $f_n(k), k \in \{1, 2, ..., m_n\}, m_n \leq n$
- Each piece is routed to k different servers
- Routing must occur at arrival, no centralize queue
- All pieces must start service at the same time, FCFS

æ

• Optimal: Pieces are routed to servers with least workload

- Optimal: Pieces are routed to servers with least workload
- Blind: Pieces are routed randomly

- Optimal: Pieces are routed to servers with least workload
- Blind: Pieces are routed randomly
- **Intermediate**: First route pieces to idle servers, then randomly route the remaining pieces

- Optimal: Pieces are routed to servers with least workload
- Blind: Pieces are routed randomly
- **Intermediate**: First route pieces to idle servers, then randomly route the remaining pieces

Cost of Information vs. Service Quality?

- Optimal: Pieces are routed to servers with least workload
- Blind: Pieces are routed randomly
- **Intermediate**: First route pieces to idle servers, then randomly route the remaining pieces

Cost of Information vs. Service Quality?

We analize the **expected waiting time** in the 3 cases.

Model: Optimal Routing Scheme

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

Model: Optimal Routing Scheme

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

Model: Optimal Routing Scheme

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

Model: Optimal Routing Scheme

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

• Equivalently, jobs wait in a unique queue until the number of servers needed are free

Model: Optimal Routing Scheme

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

• Equivalently, jobs wait in a unique queue until the number of servers needed are free

Model: Optimal Routing Scheme

Analyzed by Green [G80] with service time of pieces $S \sim \text{Exp}(\mu)$.

• Equivalently, jobs wait in a unique queue until the number of servers needed are free

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

We propose a mixed scheme.

1 Motivation

2 Model

3 Preliminary Results

4 Numerical Results

5 Conclusions

Let f be a distribution of the number of pieces such that $f_n \stackrel{n}{\Rightarrow} f$, with finite mean $\mathsf{E}[N] = \sum_{k=1}^{\infty} kf(k)$.

Let f be a distribution of the number of pieces such that $f_n \stackrel{n}{\Rightarrow} f$, with finite mean $\mathsf{E}[N] = \sum_{k=1}^{\infty} kf(k)$.

• Green [G80]: if $\lambda \mathsf{E}[N] / \mu < 1$, then $W^{(n)} \stackrel{n}{\Rightarrow} 0$.

Let f be a distribution of the number of pieces such that $f_n \stackrel{n}{\Rightarrow} f$, with finite mean $\mathsf{E}[N] = \sum_{k=1}^{\infty} kf(k)$.

- Green [G80]: if $\lambda \mathsf{E}[N] / \mu < 1$, then $W^{(n)} \stackrel{n}{\Rightarrow} 0$.
- Olvera-Cravioto & Ruiz-Lacedelli [OR14]: $W^{(n)} \stackrel{n}{\Rightarrow} W$, if there exists $\beta > 0$ such that

$$\mathsf{E}\left[\sum_{i=1}^{N} e^{\beta(\chi_i - \tau_i)}\right] = \frac{\lambda \mathsf{E}\left[N\right]^2}{\beta + \lambda \mathsf{E}\left[N\right]} \mathsf{E}\left[e^{\beta\chi_1}\right] < 1,$$

where $N \sim f$, $\chi_i \sim S$ and $\tau_i \sim \text{Exp}(\lambda \mathsf{E}[N])$ are independent.

1 Motivation

2 Model

3 Preliminary Results

4 Numerical Results

5 Conclusions

6 References

э

Mauro Escobar (Columbia U) Routing Policies for Sync Queues November 2nd, 2015 13 / 22

ъ

• 50 - 1,000 servers

- 50 1,000 servers
- 30,000 jobs

- 50 1,000 servers
- 30,000 jobs
- Distribution of the number of pieces:
 - $N \sim \text{Poisson (light tail)}$
 - $N \sim$ Poisson composed with Pareto (heavy tail)

- 50 1,000 servers
- 30,000 jobs
- Distribution of the number of pieces:
 - $N \sim \text{Poisson (light tail)}$
 - $N \sim$ Poisson composed with Pareto (heavy tail)
- Service time of the pieces:
 - $S \sim \text{Unif}(0, 1)$
 - $S \sim \operatorname{Exp}(1)$

Numerical Results: Example 1

Parameters:

$$\lambda = 0.1$$
 $S \sim \text{Unif}(0, 1)$ $\mathsf{E}[N] = 2 \text{ (light tail)}$

ъ

Numerical Results: Example 1

Parameters:

 $\lambda = 0.1$ $S \sim \text{Unif}(0, 1)$ $\mathsf{E}[N] = 2$ (light tail)

 $\lambda = 0.1 \qquad S \sim \mathrm{Unif}(0,1) \qquad \mathsf{E}\left[N\right] = 2 \text{ (heavy tail)}$

ъ

 $\lambda = 0.1$ $S \sim \text{Unif}(0, 1)$ $\mathsf{E}[N] = 2$ (heavy tail)

Average Waiting Time:

 $8 \cdot 10^{-2}$ $6 \cdot 10^{-2}$ $4 \cdot 10^{-2}$ $2 \cdot 10^{-2}$ $\xrightarrow{} Opt \ \ \mathcal{C} Int$ $\xrightarrow{} Blind$ 0 0 200400 600 800 1,000 Number of Servers

 $\lambda = 0.1 \qquad S \sim \mathrm{Unif}(0,1) \qquad \mathsf{E}\left[N\right] = 20 \text{ (heavy tail)}$

э

 $\lambda = 0.1 \qquad S \sim \text{Unif}(0,1) \qquad \mathsf{E}\left[N\right] = 20 \text{ (heavy tail)}$

$$\lambda = 0.015$$
 $S \sim \text{Exp}(1)$ $\mathsf{E}[N] = 4 \text{ (light tail)}$

Mauro Escobar (Columbia U) Routing Policies for Sync Queues November 2nd, 2015 17 / 22

 $\lambda = 0.015$ $S \sim \text{Exp}(1)$ $\mathsf{E}[N] = 4$ (light tail)

Average Waiting Time:

 $\lambda = 0.0025 \qquad S \sim \mathrm{Exp}(1) \qquad \mathsf{E}\left[N\right] = 10 \text{ (heavy tail)}$

ъ

э

 $\lambda = 0.0025$ $S \sim \text{Exp}(1)$ $\mathsf{E}[N] = 10$ (heavy tail)

Average Waiting Time:

1 Motivation

2 Model

3 Preliminary Results

4 Numerical Results

э

According to our numerical results:

According to our numerical results:

• Light and heavy tails behave similarly

э
According to our numerical results:

- Light and heavy tails behave similarly
- Only knowing which servers are empty, decreases the waiting time significantly

1 Motivation

2 Model

- 3 Preliminary Results
- 4 Numerical Results

5 Conclusions

э

æ

- [G80] Green, Linda. "A queueing system in which customers require a random number of servers." Operations Research 28, no. 6 (1980): 1335-1346.
- [OR14] Olvera-Cravioto, Mariana & Ruiz-Lacedelli, Octavio. "Parallel queues with synchronization." (2014) arXiv:1501.00186.
 - [S12] Stolyar, Alexander. "An infinite server system with general packing constraints." (2012) arXiv:1205.4271.